Measuring the Fire-Induced Velocity Flux in a Doorway with Particle Image Velocimetry

Rodney A. Bryant
NIST
Building and Fire Research Laboratory
Fire Metrology Group

Background

Objective

• To improve gas velocity measurements in full-scale fire-induced flows by implementing state-of-the-art measurement techniques (Particle Image Velocimetry - PIV)

Outcome

- Better physical evidence to support and improve our interpretations of the physical processes of enclosure fires
- Better data for confirmation of conventional measurement and modeling techniques

Historical Perspective

• K. Steckler, H. Baum, J. Quintiere, Fire Induced Flows Through Room Openings – Flow Coefficients, Proceedings of the Combustion Institute, 20 1591-1600 (1984)

Instrument	Measured Quantity	Local Inferre Quantity	ed Global Quantity
Thermocouples	Т	$\rho(y) \sim \frac{1}{T(y)},$ $V(y) \sim \Delta \rho(y)$	$\dot{V} \sim W \int V(y) \partial y$
Diff Press Xdcrs (bdp)	ΔP	$V(y) \sim \sqrt{T(y)\Delta P(y)}$	$\dot{m} \sim W \int \rho(y) V(y) \partial y$
Stereo PIV	Δd	$V_x(x, y) \sim \Delta d_x(x, y)$ $V_y(x, y) \sim \Delta d_y(x, y)$ $V_z(x, y) \sim \Delta d_z(x, y)$	$\dot{V} = \iint V_z(x, y) \partial y \partial x$ $\dot{m} \approx \iint \rho(y) V_z(x, y) \partial y \partial x$

Review of PIV

V = displacement / time

Experiment Overview

Enclosure Fire

- single vent (doorway)
- outflow
- inflow

ISO 9705 Room

- interior dimensions (3.6 x 2.4 x 2.4) m
- doorway dimensions (0.79 x 1.96) m

Well controlled heat source

- natural gas burner
- over ventilated fires

Instrumentation

- thermocouple arrays (temp)
- bi-directional probes (diff press)
- Stereo PIV (in flow only)

Experiment Process

Parameter	No. Exp
Total Exp	10
Doorway Velocity (PIV)	9
Room Temperature (Asp TC)	5
Doorway Temperature and Differential Press (BDP)	4
Heat Release Rate (O ₂ Calorimetry)	3
Max Fire, 512 kW	5

PIV Flux Slice, z=5cm

Vertical Profiles from Flux Slice; x=0cm, z=5cm

PIV Centerline Slice, x=0cm

Interior

Door Jamb

Exterior

Vertical Profiles from Centerline Slice, x=0cm, z=5cm

Comparison of PIV and BDP Results - 2

Velocity Flux of Air Into the Room

Summary

- Stereo PIV has been applied to a full-scale fire-induced doorway flow
 - the flow into the room was fully mapped
 - the complete velocity vector was measured, (V_x, V_y, V_z) volume flow rate or velocity flux was computed
- Confidence in the PIV results is supported by
 - good repeatability between experiments
 - good agreement between the PIV methods
- The conventional flow measurement technique, the bi-directional probe, has been challenged by an independent technique
 - discrepancy is not unreasonable but there is room for improvement
 - PIV provides a tool for better interpretation of the response of the bi-directional probe

